
ARMY RESEARCH LABORATORY

Computer-Aided Maintenance for
Embedded Real-time Software

CPT David A. Dampier
MAJ Ronald B. Byrnes

LTC Mark R. Kindl

5SÄS

ARL-TR-839 August 1995

DTIC
ELECTE
OCT 1 2 19951

G

19951011 054

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

DTI® QUALITY INSPECTED 8

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information
Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army
position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute
indorsement of any commercial product.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
August 1995

3. REPORT TYPE AND DATES COVERED
Final, Jan-Jun 94

4. TITLE AND SUBTITLE

Computer-Aided Maintenance for Embedded Real-Time Software

6. AUTHOR(S)

CPT David A. Dampier, MAJ Ronald B. Byrnes, and LTC Mark R. Kind!

5. FUNDING NUMBERS

N/A

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Army Research Laboratory
ATTN: AMSRL-SC-IS
115 O'Keefe Bldg
Georgia Institute of Technology
Atlanta, GA 30332-0800

8. PERFORMING ORGANIZATION
REPORT NUMBER

ARL-TR-839

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

This paper was originally presented at the Army Science Conference in June 1994.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Army software systems get more complex as Army hardware gets more sophisticated. Life-cycle costs for these
systems are expected to exceed $35 billion over the life of current systems. Current software development and maintenance
practice will scon be insufficient; hence, to keep pace, computer-aided methods must be adopted.

One such method, computer-aided prototyping, improves software development and benefits costly software
maintenance, by taking advantage of automation and decreasing costly human involvement In computer-aided prototyping,
software prototypes written in a specification language are translated into some high-level programming language, like Ada,
compiled, and demonstrated to the customer. Based on customer comments, the prototype is quickly updated and
demonstrated to the customer again. This iterative process continues until the customer and designer agree on the prototype
design. The prototype is then used as the baseline version of the final system.

Change-merging is a formal method which allows multiple design teams to work on different enhancements to the same
prototype. These enhancements can be made independently and combined automatically using our change-merging
algorithm. As long as the independent enhancements do not conflict with one another, the result of the change-merge is
a prototype with the capability of all the enhancements. This method is applied to the maintenance of different versions
of existing systems by making enhancements to the baseline version and automatically integrating these changes into each
fielded version. This will drastically reduce the time required to update software systems in the field.

14. SUBJECT TERMS

software, automation, computer-aided prototyping, maintenance, formal models,
software engineering, software merging, change integration, slicing

15. NUMBER OF PAGES
15

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19 SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

INTENTIONALLY LEFT BLANK.

n

TABLE OF CONTENTS

Page

LIST OF FIGURES v

1. INTRODUCTION 1

2. CHANGE-MERGING 2

3. SLICING OF PROTOTYPES 3

4. SLICING METHOD FOR CHANGE-MERGING OF PROTOTYPES 6

5. SUMMARY 9

6. REFERENCES 11

DISTRIBUTION LIST 13

Accesion For

NTIS CRA&I JT
DTIC TAB D
Unannounced
Justification

By
Distribution/

D

Availability Codes

Dist

ßd

Avail and / or
Special

in

INTENTIONALLY LEFT BLANK.

IV

LIST OF FIGURES

Figure Page

1. Change merge algorithm 3

2. Change propagation through multiple versions of a software system 3

3. PDG for the Patriot missile defense system, version 1.1 5

4. The slice of Patriot's PDG with respect to the stream tacticcdstatus . 5

5. PDG for the Patriot missile defense system, version 1.2 6

6. PDG for the Patriot missile defense system, version 2.2 7

7. Preserved part of the PDG for versions 1.1, 1.2, and 2.2 of the Patriot system 7

8. Affected part of the PDG for version 1.2 of the Patriot system 8

9. Affected part of the PDG for version 2.2 of the Patriot system 8

10. Result of change-merging versions 1.1,1.2, and 2.2 of the Patriot system 9

INTENTIONALLY LEFT BLANK.

VI

1. INTRODUCTION

Future Anny software systems will continue to increase in complexity as long as Army hardware

continues to get more sophisticated and mission needs more challenging. Life-cycle costs for these

systems will continue to rise. It is estimated that life-cycle costs of the over 350 software systems that

the U.S. Army Materiel Command is currently responsible for will exceed $35 billion. The maintenance

costs for these systems is estimated at between $17-25 billion (Piersall 1994). Current software

development and maintenance practice will soon become insufficient to handle the evolution of this

software at a reasonable cost; hence, more reliable and efficient, computer-aided methods must be adopted

in order to keep pace.

One such method is computer-aided prototyping. This method not only improves software

development activities but benefits software maintenance as well. The benefits provided by

computer-aided prototyping to software maintenance start in the initial phases of system development.

If current methods are used to develop and maintain this software, software costs will continue to rise, thus

counteracting the decreasing budget trend. What we need are software development and maintenance

methods which take advantage of automation and decrease costly human involvement.

Computer-aided prototyping is one such method that reduces initial development time while allowing

the development software to be maintained using the same prototyping tools. In computer-aided

prototyping, quickly built and iteratively updated prototypes of the intended system are demonstrated to

the user. Each successive iteration of the prototype resembles more closely the final intended version of

the software. The final accepted prototype is a very close approximation of the intended software system.

Since the prototype is written in a specification language translatable to a high-level programming

language such as Ada, the code produced by the prototyping environment can be used in the final software

product

This same prototyping environment can also be used to perform maintenance on a production version

of a software system. Since translation mechanisms may also be used to translate high-level programming

code into the prototyping language (Altizer and Berzins 1992), a production version of the software system

can be translated into the prototyping language, loaded into the prototyping environment, updated, and

translated back into the high-level programming language. This is useful because the prototype description

is significantly simpler than the production code if the prototype is expressed in a notation tailored to

1

support modifications. In addition, the software tools in the computer-aided prototyping environment can

help carry out the required modifications rapidly (Luqi 1989). This research impacts both of these roles

for rapid prototyping. We concentrate on application of this technology to software maintenance, since

the majority of maintenance costs are associated with enhancement and refinement rather than correcting

faults (Piersall 1994).

2. CHANGE-MERGING

Change-merging is the process of automatically combining the effects of several changes to a software

system (Dampier, Luqi, and Berzins 1994). Early version control systems such as the source code control

system (SCCS) (Silverberg 1992) and the revision control system (RCS) (Tichy 1982) provide primitive

change-merging facilities based on string editing operations on the source text without considering the

effects on program behavior. However, automated tools must provide guarantees to designers regarding

program behavior. Semantics-based change-merging seeks to construct a program whose behavior contains

all of the significant changes made in the modified versions while maintaining any behavior common to

all three versions.

We have constructed a model and algorithm for automatically updating different versions of a software

prototype with changes made to the base version as shown in Figure 1. These changes are applied to the

base version and propagated through all of the different production versions by using the change-merging

algorithm. This algorithm accepts a base version and two modified versions of the program and uses

program slicing (Weiser 1984) to find the part of the base version preserved in both of the modifications,

as well as the parts of the modifications which are different from the base. The algorithm then combines

these three pieces into a merged program containing the functionality peculiar to each of the modified

versions. This method is applied to the change propagation problem by using the base version of the

program as the base for the change-merge, the production version to be updated as one modification, and

the changed base version as the other modification as shown in Figure 2. As long as the change made

to the base does not conflict with the production version, the result will be an updated production version

containing both its original functionality and the update.

A working version of this change-merge algorithm has been developed for the computer-aided

prototyping system (CAPS) (Luqi 1989), using the prototyping system description language (PSDL) (Luqi

1988) as its base language.

Algorithm Change-Merge(BASE, A, B : psdl_program) return psdl_program is
begin

Change-Merge the Specifications;
—Each individual component of the specification is change-merged according to the rules

defined
-by Dampier (1990, 1994).

Change-Merge the Graphs;
Build Prototype Dependence Graphs for each version;
Calculate the Preserved Part of BASE in both A and B;
Calculate the Affected Part of both A and B with respect to Base;
Graph-Union the Preserved Part with the Affected Parts of both A and B;
Check Correctness of Merge using Compare Graphs;

Change-Merge the remainder of the Implementations;
-The stream and timer declarations along with the control constraints are merged according to

Figure 1. Change merge algorithm.

Figure 2. Change propagation through multiple versions of a software system.

3. SLICING OF PROTOTYPES

The change-merging algorithm is based on the ability to partition a portion of the prototype's

functionality using prototype slicing. The slice is constructed by analyzing the prototype's dependence

graph with respect to a set of its data streams. The slice captures only that portion of the prototype that

can possibly affect the values written to one of those streams.

A prototype dependence graph (PDG) for a prototype P is an augmented, fully expanded, PSDL

implementation graph GP = (V, E, Q. The set of vertices, V, has been augmented with an external vertex,

EXT. The set of edges, E, has been augmented with an edge from each vertex without an outgoing edge

to the EXT vertex. Furthermore, a timer dependency edge is added from Vj to Vj when Vj, Vj e V and Vj

contains timer operations that affect the state of a PSDL timer read by Vj. A slice of a PSDL prototype

P with respect to a set of streams X, SP (X) = (V, E, Q, is a subgraph of the PDG, GP, which includes

the part of P affecting the values written to that set of data streams. A slice is constructed as follows:

(1) V is the smallest set that contains all vertices v{ e GP that satisfy at least one of the following

conditions:

(a) Vj writes to one of the data streams in X.

(b) Vj precedes V: in GP, and Vj e V.

(2) E is the set that contains all of the data streams xk e GP which satisfy one of the following

conditions:

(a) xk G X.

(b) xk is directed to some Vj e V.

(3) C is the set that contains all of the timing and control constraints associated with each operator

in V and each data stream in E.

An example of a PDG is shown in Figure 3. This graph is the implementation graph for a prototype

of the Patriot missile defense system. This prototype has five operators and eight streams. A slice of this

operator taken with respect to one of those streams will contain everything in the prototype mat affects

the values written to that stream. An example of the slice of this prototype with respect the stream

tactical status is shown in Figure 4.

radarmode

tracki

a& (^l^A SV

control_Fatriot_ext

Figure 3. PPG for the Patriot missile defense system, version 1.1.

radar mod

track id

track file

Figure 4. The slice of Patriot's PPG with respect to the stream tacticalstatus.

Slices are valuable in change-merging because they partition the prototype into disjoint parts that can

be considered in isolation without worrying about the rest of the prototype. This guarantees that a slice

taken from one prototype and placed in another where that slice is still well-formed will behave in

precisely the same way as it did in the first prototype (Dampier, June 1994).

4. SLICING METHOD FOR CHANGE-MERGING OF PROTOTYPES

We use prototype slicing for change-merging in much the same way program slicing was used in

Horwitz integration method (Horwitz, Prins, and Reps 1988). We use slicing to calculate the preserved

part of the base version and affected parts of each modified version when performing a semantics-based

change-merge of three versions of a prototype.

Consider two modified versions of the base Patriot prototype, Version 1.1, shown in Figure 3. The

first modified version, 1.2, shown in Figure 5, is one in which a modified version of the control_Patriot

module has been installed in a working system. The second modified version, 2.2, shown in Figure 6,

is a copy of the base in which the display_status module has been updated. The preserved part of the base

version of the prototype is determined by finding the largest slice common to all three versions. In the

Patriot system example, this is the slice of Patriot's PDG with respect to the following set of streams:

{radar_mode, trackjd, missile_track, intercept_angle, target_range, tactical_status, launch_angle, track_file,

launch_Patriot_ext}. A picture of this slice is shown in Figure 7.

radar mode

track

&* (,9is«>™ <&?v

control Patriot_2_ext

Figure 5. PDG for the Patriot missile defense system, version 1.2.

radar mode

track i

200ms

control Patriot ext

Figure 6. PPG for the Patriot missile defense system, version 2.2.

radar mode

track i

track_file
Patriot
Radar l^5^//e / \ cix&

^C?ck \ 200mi «^ "

Figure 7. Preserved part of the PPG for versions 1.1, 1.2, and 2.2 of the Patriot system.

The affected parts of the two modified versions are computed by comparing the base version, Figure 3,

with the modifications, Figures 5 and 6. This comparison is done using prototype slicing. If the slice of

a modified version with respect to a set of streams is different than the same slice of the base version, then

those streams are affected parts. Any change between the base and the modified versions is significant

and must be included in the affected part for that modification. The affected parts of the two modified

versions of the Patriot prototype are shown in Figures 8 and 9.

300ms

control_Patriot_2_ext

Figure 8. Affected part of the PPG for version 1.2 of the Patriot system.

2,0W&S

display_
tactical_2_ext

Figure 9. Affected part of the PPG for version 2.2 of the Patriot system.

In our algorithm, the change-merged version is built by combining the preserved part with each of the

affected parts using a graph-union operation. The result of applying the change-merge operation to the

three versions, 1.1,1.2, and 2.2, of the Patriot prototype is shown in Figure 10. This is a change-merged

version of the graph but is not yet guaranteed to be semantically correct. The semantic correctness is

guaranteed only after the change-merged version is compared with each of the modified versions to ensure

that any changes made in the modified versions are preserved during the change-merge operation.

We check for correctness by comparing the slices of both the modified version and the change-merged

version with respect to the streams in the affected part for that modified version. If the slices are the

same, then we are guaranteed to have preserved the semantic meaning significant to the modified version.

If the slices are different, then a conflict has occurred between the two modified versions that must be

resolved by the engineer.

radar_mode

track_i

200ms

%vis /bisp1ay_\ ,"i5P%

control_Hatriöt_2_ext

Figure 10. Result of change-merging versions 1.1. 1.2. and 2.2 of the Patriot system.

5. SUMMARY

We have described a formal method that can significantly improve both the software development and

software maintenance processes. The method provides the ability for software development teams to work

on independent parts of a software project and use a computer-aided tool to automatically integrate their

respective updates. This method can significantly decrease development time, thereby improving customer

satisfaction with the delivered system. This method can also be used to update different production

versions of a software system by allowing changes to be made to the base version and automatically

change-merged with each of the versions in the field. Use of this method will decrease both software

development and maintenance costs by providing the software engineer with a reliable computer-aided tool

to decrease their workload.

Future enhancements to this research include considering abstract data types written in the prototyping

language, finding ways to resolve more conflicts automatically, and developing methods to change-merge

programs written in implementation languages like Ada and C++.

INTENTIONALLY LEFT BLANK.

10

6. REFERENCES

Altizer, C, and V. Berzins. CSM-92 Program Comprehension Woikshop Notes, pp. 1-3, November 1992.

Dampier, D. "A Formal Method for Semantics-Based Change-Merging of Software Prototypes."
PhD. Dissertation, U.S. Naval Postgraduate School, Monterey, CA, June 1994.

Dampier, D. "A Model for Merging PSDL Prototypes." Master's Thesis, U.S. Naval Postgraduate School,
Monterey, CA, June 1990.

Dampier, D, Luqi, and V. Berzins. Journal of Systems Integration, vol. 4, no. 1, pp. 33-49, 1994.

Horwitz, S., J. Prins, and T. Reps. Conference Record of the Fifteenth ACM Symposium on Principles
of Programming Languages, pp. 133-145, January 1988.

Luqi. IEEE Transactions on Software Engineering, vol. 14, no. 1, pp. 1409-1423, 1988.

Luqi. IEEE Computer, vol. 22, no. 6, pp. 13-25, 1989.

Piersall, J. U.S. Army Research, Development and Acquisition Bulletin, pp. 37-40, January-February
1994.

Silverberg, I. Source File Management with SCCS. Englewood Cliffs, NJ: Prentice Hall, 1992.

Tichy, W. Proceedings of the 6th International Conference on Software Engineering, pp. 58-67,
September 1982.

Weiser, M. IEEE Transactions on Software Engineering, vol. 10, no. 4, pp. 352-357, 1984.

11

INTENTIONALLY LEFT BLANK.

12

NO. OF
COPIES ORGANIZATION

ADMINISTRATOR
ATTN DTIC DDA
DEFENSE TECHNICAL INFO CTR
CAMERON STATION
ALEXANDRIA VA 22304-6145

DIRECTOR
ATTN AMSRL OP SD TA
US ARMY RESEARCH LAB
2800 POWDER MILL RD
ADELPHI MD 20783-1145

DIRECTOR
ATTN AMSRL OP SD TL
US ARMY RESEARCH LAB
2800 POWDER MILL RD
ADELPHI MD 20783-1145

DIRECTOR
ATTN AMSRL OP SD TP
US ARMY RESEARCH LAB
2800 POWDER MILL RD
ADELPHI MD 20783-1145

ABERDEEN PROVING GROUND

DIRUSARL
ATTN AMSRL OP AP L (305)

13

NO. OF
COPIES ORGANIZATION

50 DIR USARL
ATTN AMSRL SC IS
115 OKEEFE BLDG GIT
ATLANTA GA 30332-0800

2 DIR USARL
ATTN AMSRL SC IS
CPT DAVID A DAMPER
155 OKEEFE BLDG GIT
ATLANTA GA 30332-0800

2 DIR USARL
ATTN AMSRL SC IS
MAJ RONALD B BYRNES
115 OKEEFE BLDG GIT
ATLANTA GA 30332-0800

2 DIR USARL
ATTN AMSRL SC IS
LTC MARK KINDL
115 OKEEFE BLDG GIT
ATLANTA GA 30332-0800

1 DIR USARL
ATTN AMSRL SC I
115 OKEEFE BLDG GIT
ATLANTA GA 30332-0800

ABERDEEN PROVING GROUND

1 DIR USARL
ATTN AMSRL SC

14

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers
to the items/questions below will aid us in our efforts.

1. ARL Report Number ARL-TR-839 Date of Report August 1995

2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report

will be used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs

avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to

organization, technical content, format, etc.)

Organization

CURRENT Name
ADDRESS

Street or RO. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the
Old or Incorrect address below.

Organization

OLD Name
ADDRESS

Street or RO. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

DEPARTMENT OF THE ARMY

OFFICIAL BUSINESS

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 0001,APG,MD

POSTAGE WILL BE PAID BY ADDRESSEE

DIRECTOR
U.S. ARMY RESEARCH LABORATORY
ATTN: AMSRL-SC-IS
ABERDEEN PROVING GROUND, MD 21005-5067

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

